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COMPUTATION OF INTERNAL TURBULENT FLOW 
WITH A LARGE SEPARATED FLOW REGION 

UPENDER K. KAUL* AND DOCHAN KWAKt 

N A S A  Ames Research Center, Moffett Field, California 94035, U.S .A.  

SUMMARY 

An implicit two-equation turbulence solver, KEM, in generalized co-ordinates, is used in conjunction with the 
three-dimensional incompressible Navier-Stokes solver, INS3D, to calculate the internal flow in a channel 
and a channel with a sudden 2:3 expansion. A new and consistent boundary procedure for a low Reynolds 
number form of the k--E turbulence model is chosen to integrate the equations up to the wall. The high 
Reynolds number form of the equations is integrated using wall functions. The latter approach yields a faster 
convergence to the steady-state solution than the former. For the case of channel flow, both the wall-function 
and wall-boundary-condition approaches yield results in good agreement with the experimental data. The 
back-step (sudden expansion) flow is calculated using the wall-function approach. The predictions are in 
reasonable agreement with the experimental data. 

KEY WORDS Two-equation Turbulence Model Separated Flow 

INTRODUCTION 

The need for a general three-dimensional (3-D) turbulent flow solver in generalized co-ordinates is 
growing as the computing power of the supercomputers increases. Until now, either for simplicity 
or for computing limitations, or for both, some approximations were necessary to reduce the 
complexity of the Reynolds-averaged Navier-Stokes equations so that a flow colud be simulated 
in a reasonable time and at a reasonable expense. Therefore, thin-layer, or the parabolized 
Navier-Stokes equations, have been widely used wherever applicable. With improved resources it 
is now possible to calculate the 3-D internal turbulent flows in which the thin layer or 
parabolization approximation may break down. 

The need for such a general, turbulent flow solver has been emphasized by the Space Shuttle 
main engine (SSME) redesign and development work. The 3-D incompressible Navier-Stokes 
code, INS3D, developed by Kwak et aL,' has been used to compute various laminar with 
particular reference to the SSME redesign process. The INS3D code, based on the artificial 
compressibility method of Chorin,' has been evolved from the two-dimensional and axisymmetric 
solvers of Steger and K ~ t l e r , ~  and Chakravarthy," respectively. In the present work, an implicit, 
two-equation, k--E turbulence solver, KEM, developed by Kaul,' ' is used in conjunction with 
INS3D to calculate internal flows in a channel, and a channel with a 2:3 sudden expansion. The 
latter corresponds to internal flow over a backward-facing step. The present k--E turbulence solver, 
which solves the 3-D transport equations for the turbulent kinetic energy, k,  and its dissipation 
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rate, E,  in generalized co-ordinates, with the diffusion terms retained in all the three directions, can 
be used in conjunction with compressible or incompressible flow solvers to compute the turbulent 
flows of interest. 

The channel flow was selected to quantitatively assess effectiveness of the wall-function and wall- 
boundary-condition approaches, using high and low Reynolds number formulations, respectively, 
and to test the new and consistent boundary procedure for the low Reynolds number formulation 
used in this study. 

The flow over a backward-facing step is one of the simpler separated flows because the location 
of the separation point is predetermined from geometric considerations rather than from pressure- 
gradient considerations. However, because the location of the reattachment point is very sensitive 
to the pressure gradient, its prediction is an excellent test for the validity of the turbulence model 
used. The separated region between these two points extends about seven step heights, with some 
uncertainty caused by the ambiguity in the location of the reattachment point. This region exhibits 
a strong streamwise pressure gradient. However, the transverse pressure gradient is small. Because 
of the latter, it is possible to do momentum integral analysis” across the flow with some empirical 
input to calculate the turbulent velocity profiles based on a mixing-length hypothesis. Although 
k-1 turbulence models have been used to predict the turbulent flow over surface obstructions,’2’13 
the k--E models tend to yield better predictions, especially for internal flows. This is partly due to 
the fact that the boundary conditions on the length scale, I, are difficult to prescribe realistically. 

The flow over the back-step has many other features associated with it that make it a very 
attractive problem to study both experimentally and computationally. The flow at the separation 
point has a boundary-layer profile of an oncoming flow. When the flow detaches, a shear layer 
grows downstream just as in a free jet boundary. In this region, vortices roll up and coalesce with 
one another, thus thickening the shear layer. This mechanism is the same as that found in a free- 
shear layer. But for the step-side wall, this process of coalescence would continue downstream. 
However, because of the presence of the step-side wall, the flow experiences a drastic change. The 
lower edge of the shear layer, as it approaches the wall, experiences a streamwise deceleration and 
an increase in pressure, thereby an adverse streamwise pressure gradient is set up. Because of this 
adverse pressure gradient, flow reversal eventually takes place, and in this process the reattachment 
point is formed. This sets up the recirculating flow in the separation bubble thus formed. The lower 
edge of the shear layer grows linearly downstream from the base of the step as it would in a free- 
shear layer. Only near the reattachment point does it get distorted and curve sharply toward the 
wall. This edge of the shear layer is therefore called the dividing streamline. The recirculation 
region is maintained by the flow reversal near the reattachment point, and the entrainment along 
the dividing streamline into the shear layer. 

TURBULENCE MODEL 

By using Einstein’s index notation and the summation convention, transport equations for k and E 

can be written in Cartesian co-ordinates as the following 2 x 2 system: 

with the turbulence kinetic energy and the homogeneous dissipation rate, respectively, given by 
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where the solution vector is 

the flux vectors are 

and the source term is 

l C , i P -  C J 2 - R e ,  PE2 --f3 2PE 
k (1, 

The kinetic energy production term due to the mean shear is given by 

929 

p = - p u . u . u .  . 

where U i  is the mean velocity and ui is the fluctuating velocity. On application of the gradient 
diffusion hypothesis (Boussinesq, 1877), the production term can be written as 

1 J 1 - 1 9  

where J i j  is the Kronecker delta, and the turbulent viscosity p t  is given by Kolmogorov’s 
hypothe~is,’~ 

p t  = C,pk”ZIRe,. 

Since at high Reynolds numbers the dissipation rate, E,  can be assumed to be proportional to k3”/l, 
we can write 

where C ,  and CL are constants. Also p k  = p + ( b / c r k ) ,  and pE = p + @,ItsE), where b/ok and p,/crE play 
the roles of effective exchange or diffusion coefficients for k and E, respectively, and where ok and o6 
can be interpreted as turbulent Prandtl numbers for the k and E transport processes. Hence, ok and 
oE can be assumed to be close to unity in accordance with expectations. The turbulent viscosity is 
redefined as 

The functionsf, and f, above take into account the low Reynolds number dependence of the 
constants,lS,l6 C ,  and C,, and they are defined as 

f, = Cl.0 - exp( - R;) ] ,  

- 3.4 
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The terms - (2pk/d2)  in the k equation and - [ ( 2 c ( ~ / d ~ l f ~ ]  in the c equation take into account the 
low Reynolds number effect near the walls and are discussed in Reference 17. The functionf, is 
given by 

where V,  is the friction velocity, and d is the normal distance to the wall. The high Reynolds number 
values of the various 'constants' are chosen as 

oE = 1.3, 

ok = 1.0, 

C, = 1.44, 

C, = 2.0, 

C3 = 0.5, 

C, = 009. 

The coefficient of viscosity p is normalized by pm, velocities are normalized by U , ,  distances by a 
characteristic length L,  and the density p by pm. This results in the reference Reynolds number 
definition as 

The turbulent kinetic energy k is normalized by U ;  and the dissipation rate E is normalized 
by U;/L .  

Although an exact equation for the dissipation rate, E, can be derived from the instantaneous 
form of the Navier-Stokes equations," the transport equation for E used here is based on heuristic 
grounds19 since the exact equation requires drastic model assumptions that yield an E equation 
with highly empirical character. The equations for k and E used here are applicable for both high 
and low values of the turbulent Reynolds number 

Pk2 R ,  = ~ R e , .  
P 

Near the wall, the high Reynolds number form of the k--E system is modified as follows. The viscous 
diffusion of k and E is included in the governing equations. The constants C, and C, are allowed to 
be functions of the turbulent Reynolds number, R,, and appropriate terms are added to the high 
Reynolds number form of the k--E equation.I5-l7 Since the total dissipation rate is not zero at the 
wall and the isotropic dissipation there vanishes, a term for the dissipation at the wall is chosen 
which corresponds to the non-isotropic part of the energy dissipation. Accordingly, the term 
- 2pk/d2 is added to the right hand side of the k e q ~ a t i o n . ' ~  With both the high and low Reynolds 
number forms thus built into the k--E system, the governing equations can be solved subject to the 
boundary conditions applied either at the wall or away from the wall through the use of wall 
functions.20 

BOUNDARY CONDITIONS 

In the present study, the boundary procedure for the low Reynolds number formulation is made 
consistent by setting the dissipation rate at the wall equal to its non-isotropic value, 2pk,/d& where 
the subscript P refers to the point next to the wall. This eliminates the need for adding the 'wall 
dissipation' term - 2(p&/d2)f3 ,  which involves an additional constant C,.' Also the term - 2pk/d2 
is removed from the governing equation for k. This procedure is seen to be well behaved, and yields 
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predictions in good agreement with experimental data. Alternatively, the zero-gradient condition 
on E at the wall is employed, with the term - 2pk/d2 retained in the k equation. Both the wall-flux 
and the wall zero-gradient boundary condition on E yield accurate predictions for a channel flow. 
Of course, the turbulent kinetic energy at  the wall is set equal to zero. A more accurate boundary 
condition on c, given in Reference 21, is used, and is valid very close to the wall for approximately 
y f  d 0.6. This condition is given by 

4Pk 
E, = ~ - Ep, 

d 2  

where subscripts w and P refer to the wall and the next point off the wall, respectively. It is 
interesting to note that in situations in which the zero-gradient condition is satisfied, all of the three 
previous conditions become identical. The predictions for channel flow using this condition are 
essentially the same as those given by the earlier boundary conditions. 

For the case of high Reynolds number formulation, a wall-function approach is adopted which 
precludes having to integrate right down to the walls. The wall-function approach” is used to 
connect the outer region to the viscous sublayer. The assumption here is that the resultant 
tangential velocity at a point P near the wall outside the viscous sublayer follows the logarithmic 
law of the wall, and the turbulence is in local equilibrium at such a point, i.e. the rate of production 
of the turbulence kinetic energy equals the rate at which it is dissipated. Then, at  such a point, 
P, we have 

where E is a parameter which accounts for surface roughness, friction, or phenomena such as 
pressure gradient or mass injection through the walls; K is the von Karman constant (= 042), 
Vp is the resultant tangential velocity at P, V, is the resultant friction velocity and is equal to 
J(rw/p) ,  and d, is the normal distance between P and the wall. The kinetic energy and the 
dissipation rate at P are then given by 

Dirichlet inflow conditions and Neumann outflow and far-field conditions in external flows are 
used to complete the necessary boundary-condition procedure. 

The numerical scheme used to integrate the k--E system in generalized coordinates is the implicit 
non-iterative approximate factorization algorithm of Beam and Warming.22 The reader is referred 
to Reference 1 1  for details. 

RESULTS AND DISCUSSION 

The k--E turbulence model was used to compute the flow in a channel and a channel with a 2:3 
sudden expansion. The latter represents an internal flow over a backward-facing step. The 
computational mesh used was a two-dimensional Cartesian grid system which was stretched in 
streamwise and cross-flow directions. For the case of channel calculations, 91 grid points were used 
in the cross-flow direction and 101 points were used in the streamwise direction. For the back-step 
calculations, an 85 x 141 (cross-flow and streamwise directions, respectively) grid was used. The 
k--E solver, KEM, was made to lag the TNS3D flow solver by one time step. To test the convergence 
property of the turbulent flow solver, a known, fully developed turbulent-channel velocity profile 
was imposed and the k--E solver was iterated to produce a converged solution of the k--E system 
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Figure I .  A comparison of the solution convergence history corresponding to the present wall-boundary-condition and 
the wall-functinn approaches: 0 wall-flux B.C.; x wall function 

by switching off the INS3D. The convergence history is shown in Figure 1, in which the 
root-mean-square values (RMSD) of the change in the solution vector from one time step to 
another are plotted against the normalized time 5. A comparison was made between the wall-flux 
boundary condition and the wall-function approach. The wall-function approach exhibits 
superior convergence characteristics. However, both wall-flux boundary condition and wall- 
function approaches yield a very fast convergence on the k--E solution, as is shown by the 
RMSD plots. 

The channel flow was simulated at a Reynolds number of 27,600 based on the channel half- 
width. Both high and low Reynolds number forms of the k--E model were solved. The low Reynolds 
number form was calculated using the present wall-flux, zero-gradient E boundary conditions and 
Chien’s formulation.” The wall-flux and zero-gradient boundary conditions on E yield almost 
identical results. A comparison of the plots of k/V: versus y +  corresponding to the three boundary 
procedures and the experiments of Clark23 is shown in Figure 2. The comparison shows a generally 
good agreement, except near the walls, where the experimental data are underpredicted by all three 
computational results. The wall-flux boundary condition yields a slightly better agreement with 
the experiments. High Reynolds number calculations with wall functions that were used here give a 
good overall agreement with the experiments, although they tend to underpredict the experiment 
in general. 

The flow over a backward-facing step was simulated using wall functions. The calculations 
correspond to Reynolds number, Re = 44,580, based on the step height, h. The experimental data 
used for comparison are those of Kim et 1 2 1 . ~ ~  The computational results of Mansour et were 
also used for an added comparison. The present calculations yield a separation length of 5.2 h, 
which is approximately the same as that in Reference 25. However, by incorporating the effects of 
curvature by introducing a rotation rate term in the E equation, the reattachment point was located 
at 6.6 h in Reference 25. The effect of the curvature term is to account for the sharp curvature of the 
dividing streamline near the reattachment point, and thus to modify the location of this point. In 
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Figure 2. Variation of the turbulence kinetic energy, k with y +  showing its near wall behaviour for channel flow: 
0 e ~ p e r i m e n t ; ~ ~  0 computation-wall function; --- computation;” ~ computation-wall B.C. 

the present calculations, no attempt was made to introduce any effects of curvature of streamlines 
either through the E equation, or through the defining equation for p,. Figure 3 is a plot of the mean 
velocity profile at the reattachment point as predicted by the present computations and those of 
Reference 25. The agreement between the profiles from the two computations is good. However, 
since the reattachment point is seen to be located at  about 7 h in the e ~ p e r i m e n t , ~ ~  with some 
uncertainty, the comparison of the two computations with the experiment is not favourable. In 
Figure 4, the mean velocity profiles are plotted at x / h  = 10.7, which is downstream of the 
reattachment point. The agreement among the two computations and the experiment at this 
location is good. 

The turbulence kinetic energy, k ,  profiles at x / h  = 7.7 are shown in Figure 5 .  Away from the wall, 
present computations overpredict the experiments. This can be construed as the reason that the 
reattachment length is underpredicted in the present computations. Since the eddies in the shear 
layer coalesce downstream of the base of the step, the length scale of the turbulence carrying eddies 
increases. It is this length scale that is overpredicted by the present computations, therefore 
resulting in a rapid growth rate of the shear layer, and thus resulting in a premature reattachment 
at 5 2 h .  Since the corresponding computational results of Reference 25 take the curvature effects 
into account, these results underpredict k given by the present computations; however, they also 
underpredict k given by the e ~ p e r i m e n t . ~ ~  The reason for this is that the experiments also have an 
uncertainty in the prediction of the reattachment point, by over a step height, which could place the 
reattachment point at less than 6 step heights away from the base. Figure 6 shows the turbulent 
shear stress distribution at x / h  = 7.7. Again, the same behaviour is exhibited by the computations 
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Figure 3. A comparison of the mean velocity profiles at the computed reattachment point, x = 5.2 h, for the backward- 
facing step flow: 0 experiment;24 0 present computation; a c o m p ~ t a t i o n ~ ~  
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Figure 4. A comparison of the mean velocity profiles at x = 10.7h: 0 e~periment;*~--- present 
computation;-computation25 

as in the turbulent kinetic energy plot in Figure 5, thus reinforcing the conclusion that it is this 
overprediction mechanism in the k--E system that is responsible for the reattachment point location 
being underpredicted. Although the peak as given by the experiment24 is not matched by the 
computations in Figure 6, the discrepancy is not as much as in the k comparison in Figure 5. That 
the discrepancies between the experimental data and the predictions are due to the overprediction 
mechanism in the k--E system has been alluded to by various authors, e.g. Hackman et aLZ6 point 
out this particular deficiency of the k--E system. They also point out that the upwind differencing 
schemes are inadequate for step flows. However, the numerical algorithm used here is based on 
the central-difference approximation of the spatial derivatives, which entails some form of 
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Figure 5. Variation of the turbulence kinetic energy, k, in the cross-flow direction at x = 7.7 h: 0 e~perirnent;~~ 0 present 
computation; a computationz5 
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Figure 6. Turbulent shear-stress distribution in the cross-flow direction at x = 7.7h: 0 e~perirnent;~~ 
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Figure 7. A comparison of pressure distributions on the step-side wall: 0 e~periment;’~ 0 present computation; 
a computationz5 

smoothing to damp out the high frequency errors that arise from this approximation. The 
importance of the interaction of these smoothing parameters with the grid systems, and the 
numerical algorithms used, has been discussed in Reference 27. In view of this discussion, and 
the fact that the computational grid used here is sufficiently fine to have achieved a grid- 
independent solution, any discrepancies between the predictions and the experimental data are 
expected to be mainly due to the inadequacies in the turbulence model. 

Finally, the pressure distribution on the step-side wall is shown in Figure 7. The pressure 
coefficient, given by 

is plotted against the downstream distance x/h .  Pressure prediction directly beneath the separation 
point on the step-side wall is not as good as that downstream. The pressure minimum as given 
computationally shows a sharper profile around it than that given by the experiment. This is directly 
related to the fact that the computations do not adequately predict the flow phenomenon in the 
corner between the step base and the step-side wall. The agreement between the present 
computation and the computations of Reference 25 is good. Both computations underpredict the 
experiment downstream of the reattachment point. 

CONCLUDING REMARKS 

Turbulent channel and backward-facing step flows have been simulated using a k--E model of 
turbulence. A new and consistent wall boundary procedure has been employed in this study for a 
low Reynolds number formulation. This procedure makes the k--E solver robust, and it yields 
predictions in somewhat better agreement with the experimental data for a channel flow than other 
formulations. Both wall-function and wall-boundary-condition approaches yield results in good 
agreement with the experimental data for the case of a channel flow. For the case of a back-step, the 
wall-function approach used in this study yields results in a favourable comparison with the 
experiment. However, the predictions are in good agreement with the experiment downstream of 
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the reattachment point. Calculations were performed on the CRAY/XMP- 12. The computational 
time per grid point per time step with the partially vectorized code was 0.18 x 1OP3s. The storage 
requirement for the back-step problem was approximately 270,000 decimal words. 
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